Abstract

Unconventional resources such as shale gas have been an extremely important exploration and production target. To understand the seismic responses of the shale gas plays, the use of rock physical relationship is important, which is constrained with geology and formation-evaluation analysis. Since organic-rich shale seismic properties remains poorly understood, seismic inversion can be used to identify the organic-rich shale from barren shale. This approach helps identify and map spatial distributions and of the organic rich shales. This study shows the acoustic impedance (AI), which is the product of compressional velocity and density, decreases nonlinearly with increasing total organic carbon (TOC) content. TOC is obtained using Roc-Eval pyrolysis for more than 120 core shale samples for the Perth Basin. By converting the AI data to TOC precent on the seismic data, we therefore can map lateral distribution, thickness, and variation in TOC profile. This extended abstract presents a case study of the northern Perth Basin 3D seismic with application of different approaches of seismic inversion and multi-attribute analysis with the rock physical relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.