Abstract

To evaluate the effect of pre-treatment air abrasion of surfaces using bioactive glass 45S5 on the progression of erosion in bovine enamel induced by a common soft drink. Twelve intact bovine incisors were selected and 24 enamel samples were prepared and randomly assigned to two groups (n = 12): 1. control group, no anti-erosive treatment; 2. experimental group: samples were air abraded with bioglass 45S5 before the erosive challenge. The enamel samples were submitted to erosive cycling using a common soft drink. Enamel surface loss was evaluated using optical profilometry; surface microhardness and roughness changes were determined using Vickers method and Vertical Scanning Interferometry, respectively. In addition, SEM observations and EDS analysis were performed to detect any alterations in surface morphology and mineral content. The data were statistically analysed using one-way ANOVA and Tukey's post-hoc test at a significance level of α = 0.05. The experimental group exhibited less (18.7%) surface loss than did the control group (p < 0.05), while also presenting a statistically significantly smaller decrease in surface microhardness compared to the control group after erosive cycling (p < 0.05). However, neither group showed a statistically significant change in surface roughness (p > 0.05). After the treatments, changes in surface morphology and mineral content of enamel were observed. Surface pre-treatment using air abrasion bioglass 45S5 may help prevent enamel erosion induced by excessive consumption of soft drinks. Further clinical trials are needed to confirm the effectiveness of this method and its clinical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.