Abstract

We are developing automated analysis of corneal-endothelial-cell-layer, specular microscopic images so as to determine quantitative biomarkers indicative of corneal health following corneal transplantation. Especially on these images of varying quality, commercial automated image analysis systems can give inaccurate results, and manual methods are very labor intensive. We have developed a method to automatically segment endothelial cells with a process that included image flattening, U-Net deep learning, and postprocessing to create individual cell segmentations. We used 130 corneal endothelial cell images following one type of corneal transplantation (Descemet stripping automated endothelial keratoplasty) with expert-reader annotated cell borders. We obtained very good pixelwise segmentation performance (e.g., Dice , , across 10 folds). The automated method segmented cells left unmarked by analysts and sometimes segmented cells differently than analysts (e.g., one cell was split or two cells were merged). A clinically informative visual analysis of the held-out test set showed that 92% of cells within manually labeled regions were acceptably segmented and that, as compared to manual segmentation, automation added 21% more correctly segmented cells. We speculate that automation could reduce 15 to 30min of manual segmentation to 3 to 5min of manual review and editing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.