Abstract

To evaluate the utility of a convolutional neural network (CNN) with an increased number of contracting and expanding paths of U-net for sparse-view CT reconstruction. This study used 60 anonymized chest CT cases from a public database called "The Cancer Imaging Archive". Eight thousand images from 40 cases were used for training. Eight hundred and 80 images from another 20 cases were used for quantitative and qualitative evaluation, respectively. Sparse-view CT images subsampled by a factor of 20 were simulated, and two CNNs were trained to create denoised images from the sparse-view CT. A CNN based on U-net with residual learning with four contracting and expanding paths (the preceding CNN) was compared with another CNN with eight contracting and expanding paths (the proposed CNN) both quantitatively (peak signal to noise ratio, structural similarity index), and qualitatively (the scores given by two radiologists for anatomical visibility, artifact and noise, and overall image quality) using the Wilcoxon signed-rank test. Nodule and emphysema appearance were also evaluated qualitatively. The proposed CNN was significantly better than the preceding CNN both quantitatively and qualitatively (overall image quality interquartile range, 3.0-3.5 versus 1.0-1.0 reported from the preceding CNN; p < 0.001). However, only 2 of 22 cases used for emphysematous evaluation (2 CNNs for every 11 cases with emphysema) had an average score of ≥ 2 (on a 3 point scale). Increasing contracting and expanding paths may be useful for sparse-view CT reconstruction with CNN. However, poor reproducibility of emphysema appearance should also be noted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call