Abstract

Atherosclerosis is a disease marked by lipid accumulation and inflammation. Recently, atherosclerosis has gained recognition as an autoimmune-type syndrome characterized by increased activation of the innate and acquired immune systems. Natural killer T (NKT) cells have characteristics of both conventional T cells and NK cells and recognize glycolipid antigens presented in association with CD1d molecules on antigen-presenting cells. The capacity of NKT cells to respond to lipid antigens and modulate innate and acquired immunity suggests that they may play a role in atherogenesis. We examined the role of NKT cells in atherogenesis and how the atherosclerotic environment affects the NKT cell population itself. The data show that CD1d-deficiency in male apolipoprotein E-deficient (apoE(0)) mice results in reduction in atherosclerosis, and treatment of apoE(0) mice with alpha-galactosylceramide, a potent and specific NKT cell activator, results in a 2-fold increase in atherosclerosis. Interestingly, we demonstrate that alpha-galactosylceramide-induced interferon-gamma responses and numbers of NKT cells in apoE(0) mice show age-dependent qualitative and quantitative differences as compared with age-matched wild-type mice. Collectively, these findings reveal that hyperlipidemia and atherosclerosis have significant effects on NKT cell responses and that these cells are proatherogenic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.