Abstract

We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of myelinated motor and sensory fibres. Axotomy-induced Wallerian degeneration appeared as fragmentation of fluorescent signals in individual YFP positive axons with a morphology and timing similar to Wallerian degeneration observed by more traditional methods. In YFP-H transgenic mice co-expressing a high dosage of Wld S, a chimeric gene that protects from Wallerian degeneration [Nat Neurosci. 4 (2001) 1199], axonal fragmentation in distal tibial nerves after sciatic nerve axotomy was approximately 10 times delayed. Considerable retardations of Wallerian degeneration using the same transgenic expression system were also observed in cultures of nerve explants, enabling in vitro real-time imaging of axonal fragmentation. Remarkably, single YFP-labelled axons could be traced in peripheral nerves for unusually long distances of up to 2.9 cm exploiting confocal fluorescence imaging. Altogether transgenic YFP-H mice prove to be a valuable tool to study mechanisms of Wallerian degeneration in vivo and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.