Abstract

The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI’s panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds’ averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis–Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect’s potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call