Abstract

Onconase, a member of the ribonuclease superfamily, is a potent cytotoxic agent that is undergoing phase II/III human clinical trials as an antitumor drug. Native onconase from Rana pipiens and its amphibian homologs have an N-terminal pyroglutamyl residue that is essential for obtaining fully active enzymes with their full potential as cytotoxins. When expressed cytosolically in bacteria, Onconase is isolated with an additional methionyl (Met1) residue and glutaminyl instead of a pyroglutamyl residue at position 1 of the N-terminus and is consequently inactivated. The two reactions necessary for generating the pyroglutamyl residue have been monitored by MALDI-TOF MS. Results show that hydrolysis of Met(-1), catalyzed by Aeromonas aminopeptidase, is optimal at a concentration of >or= 3 m guanidinium-chloride, and at pH 8.0. The intramolecular cyclization of glutaminyl that renders the pyroglutamyl residue is not accelerated by increasing the concentration of denaturing agent or by strong acid or basic conditions. However, temperature clearly accelerates the formation of pyroglutamyl. Taken together, these results have allowed the characterization and optimization of the onconase activation process. This procedure may have more general applicability in optimizing the removal of undesirable N-terminal methionyl residues from recombinant proteins overexpressed in bacteria and providing them with biological and catalytic properties identical to those of the natural enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.