Abstract
Accurate identification of high-risk multiple myeloma (HRMM) is important for prognostication. The degree of diffuse infiltration patterns on magnetic resonance imaging (MRI) is associated with patient prognosis in multiple myeloma. However, objective indexes to determine the degree of diffuse infiltration patterns are unavailable. To investigate whether qualitative and quantitative evaluations of diffuse infiltration patterns on MRI could identify HRMM. Retrospective. Totally, 180 patients (79 HRMM and 101 standard-risk MM) were assessed. The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, and/or p53 mutations was considered to indicate HRMM. 3.0 T/diffusion-weighted whole-body imaging with background body signal suppression (DWIBS), modified Dixon chemical-shift imaging Quant (mDIXON Quant), and short TI inversion recovery (STIR). Qualitative analysis involved assessing the degree of diffuse marrow infiltration (mild, moderate, or severe), and quantitative analysis involved evaluating apparent diffusion coefficient (ADC), fat fraction (FF), and T2* values. Clinical data such as sex, age, hemoglobin, serum albumin, serum calcium, serum creatinine, serum lactate dehydrogenase, β2-microglobulin, and bone marrow plasma cells (BMPCs) were also included. Univariate and multivariate analyses, receiver operating characteristic (ROC) curve. P < 0.05 was considered statistically significant. The high-risk group had significantly higher ADC and T2* and lower FF compared with the standard-risk group. Multivariate analysis indicated BMPCs as a significant independent risk factor for HRMM (odds ratio (OR) = 1.019, 95% CI 1.004-1.033), while FF was a significant independent protective factor associated with HRMM (OR = 0.972, 95% CI 0.946-0.999). The combination of BMPCs and FF achieved the highest areas under the curve (AUC) of 0.732, with sensitivity and specificity of 70.9% and 68.3%, respectively. Compared with qualitative analysis, FF value was independently associated with HRMM. The quantitative features of diffuse marrow infiltration on MRI scans are more effective in detecting HRMM. 3 TECHNICAL EFFICACY: Stage 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.