Abstract

Bismuth brass has very good mechanical properties and is friendly to environment. Therefore, it can be widely used in different fields. In order to realize the convenient, rapid and sensitive elemental analysis of trace elements in bismuth brass, fiber laser based high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) is developed. In the experiments, a compact fiber laser operated at 5 kHz pulse repetition rate is used to ablate the sample and produce plasma, and the spark discharge is used to further break down the ablated sample and enhance the plasma emission for sensitive elemental analysis. A compact fiber-optic spectrometer coupled with non-intensified charge-coupled device (CCD) is used to record the spectra. Bismuth, lead and tin in several bismuth brass standard samples are quantitatively analyzed. The plasma temperature is determined to be about 7962 ± 300 K by using the Boltzmann plots of copper, zinc and tin elements; the electron density is determined to be about 1.049 × 10<sup>–17</sup> cm<sup>–3</sup> based on the Stark broadening of Cu (I) 510.47 nm analytical line. The plasma is determined to be in local thermodynamic equilibrium (LTE) state according to McWhirter criterion as well as appended criteria for transient plasma. Under the present experimental condition, the calibration curves of bismuth, lead and tin in bismuth brass are built with fitting goodness of higher than 95%. The detection limits of bismuth, lead and tin are determined to be 25.5 ppm, 64.2 ppm and 316.5 ppm, respectively. The weak transition probability of tin atoms leads to worse detection limit of tin than the scenarios of bismuth and lead. The ways to further improve the analytical sensitivity and minimize system dimensions are discussed in this article. It is demonstrated that high repetition rate laser-ablation spark-induced breakdown spectrometer based on compact fiber laser as well as compact fiber-optic spectrometer can be used to realize the convenient, rapid and sensitive elemental analysis of trace elements in bismuth brass. This study is also helpful in analyzing the trace harmful elements, including bismuth, lead and tin in high temperature alloys with HRR LA-SIBS. In comparison with laser-induced breakdown spectroscopy (LIBS), the HRR LA-SIBS technique has several intrinsic advantages, such as fast spectral data collection speed, cost-effective system and low continuum background and so on. This technique is very useful in implementing the elemental analysis of different alloy samples and can be potentially used in metallurgical industry in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call