Abstract

A new approach for the quantitative analysis of trabecular microstructure, based on high-field proton nuclear magnetic resonance (NMR) imaging, is presented. NMR is ideal because it provides high contrast between the marrow proton signal and the bone, which appears with background intensity. Images from 1 cm3 defatted specimens of trabecular bone, suspended in water doped with 1 mM Gd(DTPA) to shorten T1 to about 300 ms, can be obtained at a resolution on the order of 30-50 microns and slice thickness of 150 microns, in 10 minutes at 400 MHz proton frequency. Digital image processing algorithms were designed and evaluated for the measurement of bone area fraction, perimeter length, mean trabecular thickness, and separation. Bone area fraction derived from the NMR images was found to be in excellent agreement with bone volume fraction measured independently (slope = 0.96, r2 = 0.924, p < 0.0001). Errors in the mean trabecular thickness and separation were < 6%. The effects of finite imaging slice thickness and signal-to-noise ratio (SNR) were also evaluated. The data suggest a resolution of 50 x 50 x 200 microns 3 and an SNR on the order of 10 to provide safe margins for precise and accurate structural analysis by means of the algorithms presented in this paper. The method allows simultaneous measurement at multiple locations within the specimen volume without the need for physical sectioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.