Abstract

Endolysins are lytic enzymes encoded by bacteriophage that represent an emerging class of protein therapeutics. Considering macromolecular thermoresistance correlates with shelf life, PlyG, a Bacillus anthracis endolysin, was thermally characterized to further evaluate its therapeutic potential. Results from a biophysical thermal analysis revealed full-length PlyG and its isolated domains comprised thermal denaturation temperatures exceeding 63°C. In the absence of reducing agent, PlyG was determined to be kinetically unstable, a finding hypothesized to be attributable to the chemical oxidation of cysteine and/or methionine residues. The presence of reducing agent kinetically stabilized the endolysin, with PlyG retaining at least ~50% residual lytic activity after being heated at temperatures up to 80°C and remaining enzymatically functional after being boiled. Furthermore, the endolysin had a kinetic half-life at 50°C and 55°C of 35 and 5.5h, respectively. PlyG represents a thermostable proteinaceous antibacterial with subsequent prolonged therapeutic shelf life expectancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call