Abstract

Relaxation mechanisms of shake gels (particle-polymer systems) are not yet fully understood, mainly because of the lack of effective structural parameters to describe relaxation processes. Small-angle X-ray scattering and dynamic light scattering methods were employed to track the relaxation processes in a water-based shake gel system, composed of 20 wt % of 24.8 nm silica nanoparticles and 0.3 wt % of poly(ethylene oxide) (PEO1000k). The gelation of the studied silica-PEO dispersion was readily induced by quick manual shaking (∼3 cycles/s). Temporal structural evolution of the shake gel after manual agitation was inferred from the development of the modeled parameters. The quantitative structural parameters extracted from the scattering data, i.e. nearest neighbor distance of silica nanoparticles and floc size of gel network, showed that the shake gel network quickly relaxes during the first 10–20 min following the shake-induced gelation, and then slowly reaches a quiescent structure after 1 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.