Abstract

Peptides from enzymatic hydrolysates of food proteins exhibit significant antioxidant activity. Several studies have attempted to determine the factors contributing to the antioxidant activity of peptides; however, the physicochemical properties and factors essential for the antioxidant activity of peptides are still unclear. In this study, in order to clarify the factors important for peptide antioxidant activity based on the properties of component amino acids, 55 tripeptides were synthesized from 20 natural amino acids and their antioxidant activity was measured using the Trolox equivalent antioxidant capacity (TEAC) assay system. The tripeptides were divided into two data sets: a training set comprising 50 compounds and a validated set comprising five compounds. The structure-activity relationship of the training set was then analyzed using classical quantitative structure-activity relationship (QSAR) analysis. The study findings demonstrate that the presence of a cysteine residue at any position, an aromatic amino acid at the C-terminus, higher hydrophobicity of the N-terminal residue, and smaller HOMO-LUMO energy gap of the middle residue can significantly enhance the antioxidant activity. The activities of the five validated compounds were predicted using the constructed QSAR model, and a good correlation between measured and predicted activities was observed. The information obtained from the QSAR model could be useful for effective production of antioxidant peptides from food proteins such as egg white proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call