Abstract

Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call