Abstract

A high proportion of Micrococcus luteus cells in cultures which had been starved for 3 to 6 months lost the ability to grow and form colonies on agar plates but could be resuscitated from their dormancy by incubation in an appropriate liquid medium (A. S. Kaprelyants and D. B. Kell, Appl. Environ. Microbiol. 59:3187-3196, 1993). We used flow cytometry and cell sorting to study populations of bacteria that had been starved for 5 months. These cells could be stained by the fluorescent lipophilic cation rhodamine 123, but such staining was almost independent of metabolically generated energy in that it was not affected by uncouplers. Two populations could be distinguished, one with a lower degree of rhodamine fluorescence (a degree of fluorescence referred to as region A and containing approximately 80% of the cells) and one with a more elevated degree of fluorescence (region B, approximately 20% of the cells). Subsequent incubation of starved cells in fresh medium in the presence of the antibiotic chloramphenicol (to which M. luteus is sensitive) resulted in the transient appearance of cells actively accumulating rhodamine 123 (and fluorescing in region B) and of larger cells exhibiting a yet-greater degree of fluorescence (region C). These more fluorescent cells accounted for as much as 50% of the total population, under conditions in which the viable and total counts were constant. Thus, metabolic resuscitation of at least one-half of the cells takes place under conditions in which cryptic growth cannot play any role. Sorting experiments revealed that the great majority of the viable cells in the starved population are concentrated in regions B and C and that the extent of rhodamine staining under conditions of starvation therefore reflects the physiological state of the cells. Physical separation of these cells from cells in region A resulted in an increase (of approximately 25-fold) in the viability of cells in regions B and C and of the population as a whole. Resuscitation of dormant cells in a most-probable-number assay in the presence of supernatant taken from growing M. luteus revealed the resuscitation of cells from regions B and C but not from region A. It is suggested that initially dormant (resuscitable) cells are concentrated in regions B and C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call