Abstract

A mass-balance indoor particle dynamic model was adopted and modified to investigate how on-roadway ultrafine particle (UFP, diameter < 100 nm) concentrations and vehicle ventilation settings affect UFP levels inside vehicles. The model was first parameterized focusing on a mechanistic, simulation-based interpretation of in-cabin data reported in Zhu et al. (2007). Under three different ventilation conditions, (1) Fan off-recirculation (RC) off, (2) Fan on-RC off, and (3) Fan on-RC on, the modeled UFP in-cabin to on-roadway (I/O) ratios were found to be 0.40, 0.25, and 0.10, respectively, and agree with the experimental data very well. Then, analysis focused on how the model input parameters, such as ventilation settings, vehicle speed, filtration, penetration, deposition, and human respiration, affect I/O ratios in broader categories of vehicle cabin microenvironments. Under condition (1), the modeled I/O ratios increased linearly, up to ∼25%, within the literature reported penetration factor range. The ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.