Abstract
For the first time, a quantitative approach was carried out to model the optical losses in several Cu2 ZnSnS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> (CZTS) based thin-film heterojunction solar cells having different window and buffer layers. The modeling indicates that the heterojunction of glass/FTO/TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> /CZTS has a lower reflection and higher transmission coefficient than glass/FTO/In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> /CZTS and conventional glass/FTO/CdS/CZTS structures. These optical losses at the interfaces (reflection) and inside the thickness (absorption) of stacked layers were calculated based on the known optical constants such as refractive index and extinction coefficient. While TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> windowed device resulted in a promising high short-circuit current and energy conversion efficiency, the In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> windowed and conventional CdS windowed devices showed to be less efficient. We compared our theoretical analysis with the practical reports given for such structures in the literature. Further studies are required to reduce the reflection and absorption losses of CZTS structures in practice. So far, the overall performance parameters (e.g., Jsc and η) are much less than our theoretical estimations. The size of the TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nanoparticles on the layer is about 100 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.