Abstract

The GNRA (N: any nucleotide; R: purine) tetraloop/receptor interaction is believed to be one of the most frequently occurring tertiary interaction motifs in RNAs, but an isolated tetraloop/receptor complex has not been identified in solution. In the present work, site-directed spin labeling is applied to detect tetraloop/receptor complex formation and estimate the free energy of interaction. For this purpose, the GAAA tetraloop/receptor interaction was chosen as a model system. A method was developed to place nitroxide labels at specific backbone locations in an RNA hairpin containing the GAAA tetraloop. Formation of the tetraloop/receptor complex was monitored through changes in the rotational correlation time of the tetraloop and the attached nitroxide. Results show that a hairpin containing the GAAA tetraloop forms a complex with an RNA containing the 11-nucleotide GAAA tetraloop receptor motif with an apparent Kd that is strongly dependent on Mg2+. At 125 mM MgCl2, Kd = 0.40 +/- 0.05 mM. The corresponding standard free energy of complex formation is -4.6 kcal/mol, representing the energetics of the tetraloop/receptor interaction in the absence of other tertiary constraints. The experimental strategy presented here should have broad utility in quantifying weak interactions that would otherwise be undetectable, for both nucleic acids and nucleic acid-protein complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call