Abstract

Coordinated movement of self-propelled agents has been well studied in collectives or swarms that display directional movement. Self-propelled agents also develop stable spatial patterns in which the agents do not necessarily exhibit directional collective movement. However, quantitative measures that are required to analyze the local and temporal coordinated movements during pattern formation processes have not been well established. Here, we study the coordinated movement of individual pairs of two different types of cells in a freely moving cell population. We introduced three criteria to evaluate coordinated movement in live imaging data obtained from the abdomen of the fruit fly, Drosophila melanogaster, at the pupal stage. All three criteria were able to reasonably identify coordinated movement. Our analysis indicates that the combined usage of these criteria can improve the evaluation of whether a pair of cells exhibits coordinated movement or not by excluding false positives. Quantitative approaches to identifying coordinated movement in a population of freely moving agents constitute a key foundational methodology to study pattern formations by self-propelled agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call