Abstract

Breast cancer has been one of the most common malignant tumors threatening female health with high incidence. Cell mechanics is becoming an important issue and could serves as a potential indicator for early cancer diagnosis. In this study, atomic force microscopy (AFM) was applied to characterize and compare the surface nanostructure and viscoelasticity of different breast cell lines. Our results show that breast cancerous cells MCF-7 exhibit more disorganized filamentous cytoskeleton structure with increased membrane roughness compared to benign breast cells MCF-10A (P < 0.05). The viscoelastic properties, including elasticity and viscosity, are significantly different between the two cell lines. MCF-7 displays reduced elasticity and viscosity, indicating that breast cancer cells are softer and more fluid than benign counterpart. Our findings provide new insights into the biophysical changes of cells during tumor transformation and suggest it could be used for early cancer detection at single cell level. SCANNING 38:558-563, 2016. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.