Abstract
BackgroundQuantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive to changes in tissue composition, however their use in cruciate ligament assessment has been limited to studies of asymptomatic populations or patients with posterior cruciate ligament tears only. The aim of this preliminary study was to compare T1rho and T2 relaxation times of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) between subjects with mild-to-moderate knee osteoarthritis (OA) and healthy controls.MethodsA single knee of 15 patients with mild-to-moderate knee OA (Kellgren-Lawrence grades 2–3) and of 6 age-matched controls was imaged using a 3.0 T MRI. Three-dimensional (3D) fat-saturated spoiled gradient recalled-echo images were acquired for morphological assessment and T1ρ- and T2-prepared pseudo-steady-state 3D fast spin echo images for compositional assessment of the cruciate ligaments. Manual segmentation of whole ACL and PCL, as well as proximal / middle / distal thirds of both ligaments was carried out by two readers using ITK-SNAP and mean relaxation times were recorded. Variation between thirds of the ligament were assessed using repeated measures ANOVAs and differences in these variations between groups using a Kruskal-Wallis test. Inter- and intra-rater reliability were assessed using intraclass correlation coefficients (ICCs).ResultsIn OA knees, both T1rho and T2 values were significantly higher in the distal ACL when compared to the rest of the ligament with the greatest differences in T1rho (e.g. distal mean = 54.5 ms, proximal = 47.0 ms, p < 0.001). The variation of T2 values within the PCL was lower in OA knees (OA: distal vs middle vs proximal mean = 28.5 ms vs 29.1 ms vs 28.7 ms, p = 0.748; Control: distal vs middle vs proximal mean = 26.4 ms vs 32.7 ms vs 33.3 ms, p = 0.009). ICCs were excellent for the majority of variables.ConclusionT1rho and T2 mapping of the cruciate ligaments is feasible and reliable. Changes within ligaments associated with OA may not be homogeneous. This study is an important step forward in developing a non-invasive, radiological biomarker to assess the ligaments in diseased human populations in-vivo.
Highlights
Quantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive to changes in tissue composition, their use in cruciate ligament assessment has been limited to studies of asymptomatic populations or patients with posterior cruciate ligament tears only
Quantitative MRI may be helpful in such studies looking at understanding and monitoring the biological changes that occur in ligaments post augmentation or repair
Six agematched healthy controls were recruited via paper and electronic advertisement materials and from a register of healthy individuals who had agreed to be contacted about research studies
Summary
Quantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive to changes in tissue composition, their use in cruciate ligament assessment has been limited to studies of asymptomatic populations or patients with posterior cruciate ligament tears only. Prasad et al used a longitudinal approach and found that T1rho and T2 measurements may predict progression of knee OA, in particular degenerative cartilage abnormalities [13] Their in-vivo application in ligaments has been limited to evaluating T2 of the PCL in an asymptomatic population, in patients with PCL tears as well as in ACL’s of asymptomatic populations and individuals post ACL reconstruction [14,15,16,17]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.