Abstract
Sweat analysis is identified as a promising biochemical technique for the non-invasive assessment of human health status. Epidermal microfluidic patches are the predominant sweat sampling and sensing devices. However, the sweat stored inside the patches may suffer from evaporation loss of moisture, which can increase the concentration of biomarkers and cause the biochemical analysis results of sweat to deviate from the actual results. This study focuses on quantitatively analysing the sweat evaporation loss within epidermal microfluidic patches. Analytical models based on the dissolution diffusion mechanism and corresponding partial differential equations for the diffusion process were initially developed. The analytical solution of the equation was derived using the method of separation of variables, and the steady-state concentration distribution of water in the materials of microfluidic patches was calculated when considering the application of epidermal microfluidics. Evaporation losses of sweat through different paths were quantitatively calculated and analysed, including permeation through covers, diffusion along microchannels, and absorption by sidewalls. Then, experiments on the evaporation loss of sweat within microfluidic patches were conducted to validate the theoretical calculations and analytical results. At last, the design of the anti-evaporation structure for microfluidic patches was discussed. This study can provide theoretical and experimental references for the design of water-retention structures in epidermal microfluidic patches, which significantly enhances the overall reliability of sweat biochemical analysis results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.