Abstract

The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's “in glass bottle” sampling method both ATR-IR and Raman methods appear less attractive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.