Abstract
AFM is now established as a powerful and direct technique for studying lipid membranes, and is highly complementary with other techniques. It is the only method for direct imaging and mechanical probing of lipid phase structure in a liquid environment down to the nanometer level. In order to understand the structure, function, and interactions of membranes at this level, we must be able to reliably and quantitatively measure the AFM images. Here we describe the methods used to process and analyze AFM images of phase-separated supported lipid bilayers . This initially takes a static approach, where we simply quantify the % of domain area, number of domains, and morphology, and quantify how many images must be taken to obtain reliable statistics. We then look at dynamics, describing the methods we use to study the nanometer scale motion of the domain perimeter as observed using Fast Scan AFM, and hence extract a quantitative line tension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.