Abstract

We report on the results of a detailed quantitative experimental evaluation of exciton relaxation pathways as well as direct measurement of singlet oxygen (1O2) generation efficiencies for CdSe/ZnS quantum dot (QD)– porphyrin nanocomposites in toluene at 295 K. QD photoluminescence quenching in nanocomposites is caused by two main factors: electron tunneling in the quantum confined QD (efficiency 0.85–0.90) and Forster resonance energy transfer (FRET) QD→porphyrin (quenching efficiency 0.10–0.15). Efficiencies of 1O2 generation γΔ by nanocomposites are essentially higher with respect to those obtained for QDs alone. For nanocomposites, the nonlinear decrease of 1O2 generation efficiency γΔ on the laser pulse energy is caused by nonradiative intraband Auger processes, realized in the QD counterpart. Finally, FRET efficiencies found from the direct sensitization data for porphyrin fluorescence in nanocomposites (ΦFRET = 0.14 ± 0.02) are in good agreement with the corresponding values obtained via the direct...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.