Abstract
It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.