Abstract

SummaryCracking of oilwell cement sheaths may lead to loss of reservoir isolation and uncontrolled hydrocarbon leakage to the environment. This paper presents a methodology to characterize the crack pattern and quantify individual cracks in cement sheaths formed due to the restrained shrinkage of the cement, focusing on the range of 5 to 200-µm crack widths. For this purpose, high-resolution cameras are used for image acquisition together with a digital image correlation (DIC) method, and a newly developed data analysis process is applied for crack detection and quantification. The methodology is applied in a case study where cracks formed in the top and perimeter surfaces of a cement ring are detected, quantified, and classified according to crack properties such as width and orientation. The obtained information on cracks with a resolution on the micrometer level proves the effectiveness of the methodology to quantify cracks in the target width range. In addition, crack characteristics such as position, length, and orientation are also quantified, and values including spacing between cracks and cracked areas are calculated. This methodology is demonstrated in this paper to detect cracking induced by restrained drying shrinkage deformations but can be applied generally to document cracking in cement sheaths under different loading and boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.