Abstract

We measure quantum and thermal phase-slip rates using the standard deviation of the switching current in superconducting nanowires at high bias current. Our rigorous quantitative analysis provides firm evidence for the presence of quantum phase slips (QPS) in homogeneous nanowires. We observe that as temperature is lowered, thermal fluctuations freeze at a characteristic crossover temperature Tq, below which the dispersion of the switching current saturates to a constant value, indicating the presence of QPS. The scaling of the crossover temperature Tq with the critical temperature Tc is linear, which is consistent with the theory of macroscopic quantum tunneling. We can convert the wires from the initial amorphous phase to a single crystal phase, in situ, by applying calibrated voltage pulses. This technique allows us to probe directly the effects of the wire resistance, critical temperature and morphology on thermal and quantum phase slips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call