Abstract

We describe an assembly technique useful for generating ordered arrays of nanowires (NWs) between electrodes via dielectrophoresis (DEP) and an analysis technique useful for extracting quantitative information about the local electric fields and dielectrophoretic forces from video microscopy data. By tuning the magnitude of the applied electric fields such that the attractive forces on the NWs are of the same order of magnitude as the Brownian forces, and by taking advantage of the inter-NW repulsive forces during DEP, NWs can be assembled into parallel arrays with high reproducibility. By employing a particle-tracking code and analysis of NW motion, we demonstrate a method for quantitative mapping of the dielectrophoretic torques and NW-surface interactions as a function of position on the substrate, which allows a more complete understanding of the dynamics of the assembly and the ability to control these parameters for precise assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.