Abstract

Nanoplastics are emerging environmental contaminants, but their presence in environmental and potable water remains largely understudied due to the absence of quantitative analytical methods. In this study, we developed and validated a pretreatment method that combines hydrogen peroxide digestion and Amicon® Stirred Cell ultrafiltration (at 100 kDa, approximately 10 nm) with subsequent detection by pyrolysis gas chromatography–mass spectrometry (Pyr-GC/MS). This method allows for the simultaneous identification and quantification of nine selected nanoplastic types, including poly(ethylene terephthalate) (PET), polyethylene (PE), polycarbonate (PC), polypropylene (PP), poly(methyl methacrylate) (PMMA), polystyrene (PS), polyvinylchloride (PVC), nylon 6, and nylon 66, in environmental and potable water samples based on polymer-specific mass concentration. Limits of quantification ranged from 0.01 to 0.44 µg/L, demonstrating the method’s ability to quantitatively detect nanoplastics in environmental and potable water samples. Most of the selected nanoplastics were detected at concentrations of between 0.04 and 1.17 µg/L, except for PC, which was consistently below the limit of detection (<0.44 µg/L). The prevalent polymer components in the samples were PE (0.10 – 1.17 µg/L), PET (0.06 – 0.91 µg/L), PP (0.04 – 0.79 µg/L), and PS (0.06 – 0.53 µg/L) nanoplastics. The presented analytical method offers an accurate means to identify, quantify, and monitor nanoplastics in complex environmental and potable water samples. It fills gaps in our understanding of nanoplastic pollution levels, providing a valuable methodology and crucial reference data for future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call