Abstract

Cerebral small vessel disease lacks specific clinical manifestations, and extraction of valuable features from multimodal images is expected to improve its diagnostic accuracy. In this study, we used deep learning techniques to segment cerebral small vessel disease imaging markers in multimodal magnetic resonance images and analyze them with clinical risk factors. We recruited 211 lacunar stroke patients and 83 control patients. The patients' cerebral small vessel disease markers were automatically segmented using a V-shaped bottleneck network, and the number and volume were calculated after manual correction. The segmentation results of the V-shaped bottleneck network for white matter hyperintensity and recent small subcortical infarction were in high agreement with the ground truth (DSC>0.90). In small lesion segmentation, cerebral microbleed (average recall=0.778; average precision=0.758) and perivascular spaces (average recall=0.953; average precision=0.923) were superior to lacunar infarct (average recall=0.339; average precision=0.432) in recall and precision. Binary logistic regression analysis showed that age, systolic blood pressure, and total cerebral small vessel disease load score were independent risk factors for lacunar stroke (P<0.05). Ordered logistic regression analysis showed age was positively correlated with cerebral small vessel disease load score and total cholesterol was negatively correlated with cerebral small vessel disease score (P<0.05). Lacunar stroke patients exhibited higher cerebral small vessel disease imaging markers, and age, systolic blood pressure, and total cerebral small vessel disease score were independent risk factors for lacunar stroke patients. V-shaped bottleneck network segmentation network based on multimodal deep learning can segment and quantify various cerebral small vessel disease lesions to some extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.