Abstract

In this paper we present an evaluation of four different algorithms based on Mathematical Morphology, to detect the occurrence of individual micro-calcifications in digitized mammogram images from the mini-MIAS database. A morphological algorithm based on contrast enhancement operator followed by extended maxima thresholding retrieved most of micro-calcifications. In order to reduce the number of false positives produced in that stage, a set of features in the spatial, texture and spectral domains was extracted and used as input in a support vector machine (SVM). Results provided by TMVA (Toolkit for Multivariate Analysis) produced the ranking of features that allowed discrimination between real micro-calcifications and normal tissue. An additional parameter, that we called Signal Efficiency*Purity (denoted SE*P), is proposed as a measure of the number of micro-calcifications with the lowest quantity of noise. The SVM with Gaussian kernel was the most suitable for detecting micro-calcifications. Sensitivity was obtained for the three types of breast. For glandular, it detected 137 of 163 (84.0%); for dense tissue, it detected 74 of 85 (87.1%) and for fatty breast, it detected 63 of 71 (88.7%). The overall sensitivity was 85.9%. The system also was tested in normal images, producing an average of false positives per image of 13 in glandular tissue, 11 in dense tissue and 15 in fatty tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.