Abstract

A quantitative analysis was carried out in the present study to determine the effects of titanium (Ti) addition on microstructures and strength of Nb-Ti microalloyed steel. The obtained results revealed that strength was significantly improved with an increase in Ti content from 0.041 to 0.079 wt pct. The difference in the yield strength between the two steel samples occurred due to the different strengthening effects of grain refinement, precipitation, and dislocation strengthening, among which the grain refinement and precipitation strengthening contributions were dominating. With a further increase in the Ti content, ferrite grains became refined. Consequently, a homogeneous ferrite microstructure was attained for high Ti contents. Moreover, large-sized (Ti, Nb)C particles manifested the Kurdjumov–Sachs (KS) relationship, whereas fine (Ti, Nb)C particles held the Baker–Nutting (BN) relationship; thus, abundant fine nanoscale (Ti, Nb)C particles formed after coiling. Furthermore, the high dislocation density facilitated the precipitation of (Ti, Nb)C particles along dislocation lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.