Abstract

Methylation-specific (MS) multiplex ligation-dependent probe amplification (MLPA) at two differentially methylated regions (DMRs) at chromosome 11p15, H19-DMR and LIT1-DMR, and microsatellite analysis for uniparental disomy (UPD) at chromosome 7 or 11, have been recommended for the genetic diagnosis of the Beckwith-Wiedemann syndrome (BWS) and the Silver-Russell syndrome (SRS). In this study, the efficacy of the MS pyrosequencing method at H19-DMR and LIT1-DMR at 11p15 and SGCE-DMR at 7q21 was evaluated for the genetic diagnosis of BWS (n=18) and SRS (n=20) patients. Epigenetic alterations or UPD were detected in 83% of BWS and 50% of SRS individuals by MS-MLPA, but the detection rate increased to 95% of BWS and 70% of SRS by MS pyrosequencing. Thirteen BWS patients (72%) harbored loss-of-methylation (LOM) at LIT1-DMR and two patients (11%) harbored gain-of-methylation (GOM) at H19-DMR, whereas two patients (11%) had both LOM at LIT1-DMR and GOM at H19-DMR, reflecting paternal UPD 11. Thirteen SRS patients (65%) harbored LOM at H19-DMR, whereas one patient (5%) had GOM at SGCE-DMR, reflecting maternal UPD 7. Birth anthropometric profiles were significantly correlated to methylation scores at either H19-DMR or LIT1-DMR. In conclusion, MS pyrosequencing enhanced the detection rate of molecular defects in BWS and SRS. Moreover, it indicates that methylation status at 11p15.5 might have an important role in fetal growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.