Abstract

We present a general framework for analysis of two closely related problems in biochemical studies: (1) The first is analysis of binding data obtained under conditions in which a second, linked ligand is present in limited total quantity. In such conditions the free activity of the second ligand varies throughout the primary ligand binding curve, and the resultant behavior can be quite complex. Analysis of such curves enables one to quantitatively extract detailed information regarding the linkage of the two ligands at intermediate stages of ligation. The treatment is applied in an accompanying paper to oxygen binding in human hemoglobin in the presence of organic phosphates [Robert, C.H., Fall, L., & Gill, S. J. (1988) Biochemistry (following paper in this issue)]. (2) The second treatment we outline regards the analogous problem of analyzing differential scanning calorimetry (DSC) data obtained for a macromolecule binding a ligand present in limited quantity. A simple model is presented that accounts for dual transitions like those already seen in DSC data for human serum albumin in the presence of nonsaturating amounts of fatty acids [Ross, P., & Shrake, A. (1987) Abstracts of the 42nd Calorimetry Conference, University of Colorado, Boulder, CO].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.