Abstract

In this work we use transition network analysis for the first time to investigate ligand migration in truncated hemoglobin (trHbN) and obtain kinetic information about the docking-site dynamics in the protein. A comparison with explicit water molecular dynamics simulations (100 ns in total) shows that the rate constants derived from the network analysis are realistic. The transition network analysis provides 1) The time-resolved connectivity network in the protein; 2) The half-lives of the docking sites; 3) The transition timescales between two given docking sites; and 4) The extent of population transfer among different docking sites of the protein as a function of lag time. We investigate the role of the Tyr 33 and Gln 58 residues in ligand migration by studying ligand migration in four mutants of trHbN. The mutation study suggests that residues Tyr 33 and Gln 58 stabilize the NO ligand in the Xe2 docking site of trHbN, thus facilitating the efficiency of the NO detoxification reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.