Abstract

The objective of this work is to develop a new kinetic spectrophotometric method for the determination of irbesartan in pharmaceutical formulations. The method is based on the reaction of carboxylic acid group of the oxidized irbesartan with a mixture of potassium iodate (KIO(3)) and iodide (KI) to form yellow colored triiodide ions in aqueous medium at 30+/-1 degrees C. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 352 nm. The initial-rate and fixed-time (DeltaA) methods are adopted for constructing the calibration curves, which were found to be linear over the concentration ranges of 10.0-60.0 and 7.5-60.0 microg ml(-1) respectively. The regression analysis of calibration data yielded the linear equations: rate=-2.138 x 10(-6)+1.058 x 10(-4)C and DeltaA=-3.75 x 10(-3)+3.25 x 10(-3)C for initial rate and fixed time (DeltaA) methods, respectively. The limit of detection for initial rate and fixed time methods are 0.21 and 2.40 mug ml(-1), respectively. The various activation parameters such as E(a), DeltaH++, DeltaS++ and DeltaG++ are also calculated for the reaction and found to be 70.95+/-0.43 kJ mol(-1), 68.48+/-0.21 kJ mol(-1), 16.54+/-0.24 J K(-1) mol(-1) and -4.94+/-0.07 kJ mol(-1), respectively. The proposed methods are optimized and validated as per the guidelines of International Conference on Harmonisation (U.S.A.). The point and interval hypothesis tests have been performed which indicate that there is no significant difference between the proposed methods and the reference method. The methods have been successfully applied to the determination of irbesartan in commercial dosage forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call