Abstract
Abstract This paper describes the modification of an existing gas chromatographic (GC) method to incorporate simultaneous mass spectrometric (MSD) and flame ionization detection (FID) into the analysis of tobacco humectants. Glycerol, propylene glycol, and triethylene glycol were analyzed in tobacco labeled as roll-your-own (RYO), cigar, cigarette, moist snuff, and hookah tobacco. Tobacco was extracted in methanol containing 1,3-butanediol (internal standard), filtered, and separated on a 15 m megabore DB-Wax column. Post-column flow was distributed using a microfluidic splitter between the MSD and FID for simultaneous detection. The limits of detection for the FID detector were 0.5 μg/mL (propylene glycol and triethylene glycol) and 0.25 μg/mL (glycerol) with a linear range of 2-2000 μg/mL (propylene glycol and triethylene glycol) and 1-4000 μg/mL (glycerol). The limits of detection for the MSD detector were 2 μg/mL (propylene glycol and triethylene glycol) and 4 μg/mL (glycerol) with a linear range of 20-2000 μg/mL (propylene glycol and triethylene glycol) and 40-4000 μg/mL (glycerol). Significant improvement in the sensitivity of the MSD can be achieved by employing selective ion monitoring (SIM) detection mode. Although a high degree of correlation was observed between the results from FID and MSD analyses, marginal chromatographic resolution between glycerol and triethylene glycol limits the applicability of FID to samples containing low levels of both of these humectants. Utilizing MSD greatly improves the reliability of quantitative results because compensation for inadequate chromatographic resolution can be accomplished with mass selectivity in detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Beiträge zur Tabakforschung International/Contributions to Tobacco Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.