Abstract

Abstract Landscapes are frequently delineated by nested watersheds and river networks ranked via stream orders. Landscapes have only recently been delineated by their interfluves and ridge networks, and ordered based on their ridge connectivity. There are, however, few studies that have quantitatively investigated the connections between interfluve networks and landscape morphology and environmental processes. Here, we ordered hillsheds using methods complementary to traditional watersheds, via a hierarchical ordering of interfluves, and we defined hillsheds to be landscape surfaces from which soil is shed by soil creep or any type of hillslope transport. With this approach, we demonstrated that hillsheds are most useful for analyses of landscape structure and processes. We ordered interfluve networks at the Calhoun Critical Zone Observatory (CZO), a North American Piedmont landscape, and demonstrated how interfluve networks and associated hillsheds are related to landscape geomorphology and processes of land management and land-use history, accelerated agricultural gully erosion, and bedrock weathering depth (i.e., regolith depth). Interfluve networks were ordered with an approach directly analogous to that first proposed for ordering streams and rivers by Robert Horton in the GSA Bulletin in 1945. At the Calhoun CZO, low-order hillsheds are numerous and dominate most of the observatory's ~190 km2 area. Low-order hillsheds are relatively narrow with small individual areas, they have relatively steep slopes with high curvature, and they are relatively low in elevation. In contrast, high-order hillsheds are few, large in individual area, and relatively level at high elevation. Cultivation was historically abandoned by farmers on severely eroding low-order hillsheds, and in fact agriculture continues today only on high-order hillsheds. Low-order hillsheds have an order of magnitude greater intensity of gullying across the Calhoun CZO landscape than high-order hillsheds. In addition, although modeled regolith depth appears to be similar across hillshed orders on average, both maximum modeled regolith depth and spatial depth variability decrease as hillshed order increases. Land management, geomorphology, pedology, and studies of land-use change can benefit from this new approach pairing landscape structure and analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.