Abstract

The quantitative analysis of high-resolution computed tomography (HRCT) is increasingly being used to quantify the severity and evaluate the prognosis of disease. Our aim was to quantify the HRCT features of idiopathic pulmonary fibrosis (IPF) and identify their association with pulmonary function tests. This was a retrospective, single-center, clinical research study. Patients with IPF were retrospectively included. Pulmonary segmentation was performed using the deep learning-based method. Radiologists manually segmented 4 findings of IPF, including honeycombing (HC), reticular pattern (RE), traction bronchiectasis (TRBR), and ground glass opacity (GGO). Pulmonary vessels were segmented with the automatic integration segmentation method. All segmentation results were quantified by the corresponding segmentation software. Correlations between the volume of the 4 findings on HRCT, volume of the lesions at different sites, pulmonary vascular-related parameters, and pulmonary function tests were analyzed. A total of 101 IPF patients (93 males) with a median age of 63 years [interquartile range (IQR), 58 to 68 years] were included in this study. Total lesion extent demonstrated a stronger negative correlation with diffusion capacity for carbon monoxide (DLco) compared to HC, RE, and TRBR [total lesion ratio, correlation coefficient (r) =-0.67, P<0.001; HC, r=-0.45, P<0.001; RE, r=-0.41, P<0.001; TRBR, r=-0.25, P<0.05, respectively]. Correlations with lung function were similar among various lesion sites with r from -0.38 to -0.61 (P<0.001). Pulmonary artery volume (PAV) displayed a slightly increased positive association with the DLco compared to total pulmonary vascular volume (PVV); for PAV, r=0.41 and P<0.001 and for total PVV, r=0.36 and P<0.001. Additionally, total lesion extent, HC, and RE indicated a negative relationship with vascular-related parameters, and the strength of the correlations was independent of lesion site. Quantitative analysis of HRCT features of IPF indicated a decline in function and an aggravation of vascular destruction with increasing lesion extent. Furthermore, a positive correlation between vascular-related parameters and pulmonary function was confirmed. This co-linearity indicated the potential of vascular-related parameters as new objective markers for evaluating the severity of IPF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.