Abstract
This study is focused on the quantitative analysis of formaldehyde in aqueous solution using a Fluoral‐P reagent and describes the characterization of the reaction, including the effect of reagent concentrations, pH, response time, dynamic range, reproducibility, photostability, and selectivity by using an ultraviolet‐visible (UV‐VIS) spectrophotometer. The relative standard deviation value was 1.79 to 2.12%. The dynamic range of the complex gives a linear stimulation of 0.00 to 3.60 ppm for the concentration of formaldehyde. The reproducibility of this study is high, with 1.79 and 2.12% for 20 and 40 ppm of formaldehyde, respectively. The interference from acetaldehyde (formaldehyde: acetaldehyde=1:100) was lower than 2.10%. In addition, the application of artificial neural networks to quantitative analysis for formaldehyde has also been done in this study to optimize the dynamic range of formaldehyde involved in the formation of Fluoral‐P–formaldehyde complex. A three‐layer feed‐forward network and the back propagation algorithm‐operated training process were used in this study. For quantitative analysis of formaldehyde, artificial neural networks, networking with 23 hidden neurons and 40,000 cycle numbers with 0.001% learning rate, produce the best training results, with sum‐squared error value 0.5847.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.