Abstract

Hydrogen metabolism is of central interest in cyanobacterial research because of its potential applications. The gene expression and physiological role of the cyanobacterial bidirectional NAD(P)+-reducing hydrogenase are poorly understood. Transcription rates of hoxEF and hoxUYH encoding this enzyme have been studied in Synechococcus sp. PCC7942. PhoxU activity was about three times higher than that of PhoxE. Circadian phasing of both promoters was found to be synchronous and influenced expression levels by at least one order of magnitude. This is the first demonstration of circadian control of gene expression for any hydrogenase. For the majority of PhoxU-driven messages, transcription presumably terminates between hoxU and hoxH. Being part of a polycistronic hoxUYHW... operon, hoxW, encoding a protease involved in C-terminal processing of the hydrogenase large-subunit HoxH, is mainly expressed by its own promoter, PhoxW. The complex transcript formation may be a key feature for controlling bidirectional hydrogenase expression in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call