Abstract

Energy transfer processes in Thulium–Bismuth co-doped germanate fiber amplifier at 1800nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800nm are 0.5wt.% and 2wt.% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.