Abstract
Background and purposeLocally advanced rectal cancer (LARC) patients showing pathological good response (pGR) of down-staging to ypT0-1N0 after neoadjuvant chemoradiotherapy (nCRT) may receive organ-preserving treatment instead of total mesorectal excision (TME). In the current study, quantitative analysis of diffusion weighted imaging (DWI) is conducted to predict pGR patients in order to provide decision support for organ-preserving strategies. Materials and methods222 LARC patients receiving nCRT and TME are enrolled from Beijing Cancer Hospital and allocated into training (152) and validation (70) set. Three pGR prediction models are constructed in the training set, including DWI prediction model based on quantitative DWI features, clinical prediction model based on clinical characteristics, and combined prediction model integrating DWI and clinical predictors. Prediction performances are assessed by area under receiver operating characteristic curve (AUC), classification accuracy (ACC), positive and negative predictive values (PPV and NPV). ResultsThe DWI (AUC = 0.866, ACC = 91.43%) and combined (AUC = 0.890, ACC = 90%) prediction model obtains good prediction performance in the independent validation set. Nevertheless, the clinical prediction model performs worse than the other two models (AUC = 0.631, ACC = 75.71% in validation set). Calibration analysis indicates that the pGR probability predicted by the combined prediction model is close to perfect prediction. Decision curve analysis reveals that the LARC patients will acquire clinical benefit if receiving organ-preserving strategy according to combined prediction model. ConclusionCombination of quantitative DWI analysis and clinical characteristics holds great potential in identifying the pGR patients and providing decision support for organ-preserving strategies after nCRT treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.