Abstract

The kinetics of isothermal crystallization of various polymers was investigated by light depolarization technique (LDT) using the new setup with direct registration of depolarization ratio. Experimental data were analyzed using new method proposed by Ziabicki who shown that degree of crystallinity is a non-linear function of degree of depolarization, crystal thickness, and its birefringence. Other experimental methods were involved providing supplementary information on crystal thickness (SAXS) and allowing comparison of crystallization kinetics (WAXS, DSC). The advantage of LDT relies on high sampling rate allowing on-line measurements and lack of inertia effects that exist in other methods like calorimetry. The limitations of the applicability of the method are discussed. The method needs supplementary information not only on crystal thickness but also on variable optical birefringence of real crystals. Our results show that LDT can be used in a simple way for investigation of crystallization kinetics at relatively high temperatures, providing large and perfect crystals. In such a case it is sufficient to use crystal intrinsic birefringence and final crystal thickness typical at particular temperature of crystallization. On the other hand, depolarization ratio combined with measurements by other methods (crystallinity and crystal thickness) can be used for estimation of crystal birefringence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.