Abstract

Fabry Disease (FD) is a rare X-linked lysosomal storage disorder characterized by systemic and ocular involvement. It has been described an increasing in retinal and conjunctival vessel tortuosity and this feature represents an important marker for the disease. Currently, there is not an objective method to measure and quantify this parameter. We tested a new semi-automatic software measuring retinal and conjunctival vessel tortuosity from eye fundus and conjunctival digital images in a group of FD patients. We performed an observational case-control study evaluating three mathematical parameters describing tortuosity (sum of angle metric [SOAM], product of angle distance [PAD], triangular index [I2e]) obtained from fundus and conjunctival pictures of 11 FD patients and 11 age and sex-matched controls. Both eyes were considered. Mann–Whitney test was used to compare the FD group versus the control group and, within the FD group, male versus female patients. Linear regression analysis was performed to evaluate the possible association of retinal and conjunctival vessels tortuosity parameters with age and with specific markers of systemic disease's progression. The tortuosity parameters (SOAM, PAD and I2e) were significantly higher in retinal vessels and in conjunctival nasal vessels in FD patients in comparison with the controls (p=0.003, p=0.002, p=0.001 respectively for retina) (p=0.023, p=0.014, p=0.001 respectively for nasal conjunctiva). No significant association was found between retinal and conjunctival tortuosity parameters and increasing age or systemic involvement markers. Vessel tortuosity represents an important clinical manifestation in FD. A computer-assisted analysis of retinal and conjunctival vasculature demonstrated an increased vessels tortuosity in patients affected by Fabry disease. This non-invasive technique might be useful to help the diagnosis in early stages, to establish disease severity and monitor its progression.

Highlights

  • Fabry disease (FD) is an X-linked recessive inborn error of glycosphingolipid metabolism resulting from deficient or absent activity of the lysosomal exoglycohydrolase α-galactosidase A (α-Gal A) [1]

  • E primary disease process starts in infancy, and clinical features of FD usually appear in childhood and adolescence

  • In the present work we used a software developed for retinal vessel tortuosity analysis in order to investigate the course of both retinal and conjunctival vessels in FD, and to try to quantify vessel tortuosity. e purpose of our study is to evaluate the clinical use of a possible quantitative analysis of the retinal and conjunctival vessels in FD as a diagnostic tool and a predictive indicator of systemic abnormalities

Read more

Summary

Introduction

Fabry disease (FD) is an X-linked recessive inborn error of glycosphingolipid metabolism resulting from deficient or absent activity of the lysosomal exoglycohydrolase α-galactosidase A (α-Gal A) [1]. Affected patients cannot effectively metabolize membrane glycosphingolipids (GSLs), globotriaosylceramide (Gb3), resulting in its progressive accumulation in lysosomes and cytoplasm in a variety of cells, including capillary endothelial cells, renal cells (podocytes, tubular cells, glomerular endothelial cells, mesangial and interstitial cells), cardiac cells (cardiomyocytes and fibroblasts) and nerve cells [2]. As in all X-linked disorders the more severe phenotype usually is manifested in affected males [4]. E clinical manifestations are characterized by cardiac and neurological dysfunctions, cerebrovascular disease, renal insufficiency, hearing impairment and ophthalmic involvement [4,5,6,7]. Two forms of recombinant enzyme have been approved in Europe: agalsidase-α and agalsidase-β, both administered as intravenous infusion biweekly [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call