Abstract

AbstractExciton dissociation between donor and acceptor is the decisive process to determine the photovoltaic performance of organic solar cells (OSCs). The rather fast dynamics of photo‐induced charge generation in well‐optimized bulk heterojunction (BHJ) composites complicate the quantitative analysis of the charge generation efficiency for donor and acceptor units. Herein, we report time‐resolved photoluminescence (TRPL) investigations and demonstrate their potential as a quantitative and contactless characterization technique allowing to separately determine the exciton splitting efficiency of donor and acceptor moieties in selected single component materials. We demonstrate that the exciton splitting efficiency for donor or acceptor moieties can be separately adjusted in these materials by post‐treatment, while the corresponding BHJ composites undergo excessive phase separation upon external stress. By relating the separate exciton splitting efficiencies to their photovoltaic performance, the limiting factor in corresponding OSCs, either charge generation or recombination, is identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.