Abstract
BackgroundDispersal between habitat patches is a key process in the functioning of (meta)populations. As distance between suitable habitats increases, the ongoing process of habitat fragmentation is expected to generate strong selection pressures on movement behaviour. This leads to an increase or decrease of dispersal according to its cost relative to landscape structure. To limit the cost of dispersal in an increasingly hostile matrix, we predict that organisms would adopt special dispersal behaviour between habitats, which are different from movements associated with resource searching in suitable habitats.ResultsHere we quantified the movement behaviour of the bog fritillary butterfly (Proclossiana eunomia) by (1) assessing perceptual range, the distance to which the habitat can be perceived, and (2) tracking and parameterizing movement behaviour within and outside habitat (parameters were move length and turning angles distributions). Results are three-fold. (1) Perceptual range was < 30 m. (2) Movements were significantly straighter in the matrix than within the habitat. (3) Correlated random walk adequately described movement behaviour for 70% of the observed movement paths within habitat and in the matrix.ConclusionThe perceptual range being lower than the distance between habitat patches in the study area, P. eunomia likely perceives these habitat networks as fragmented, and must locate suitable habitats while dispersing across the landscape matrix. Such a constraint means that dispersal entails costs, and that selection pressure should favour behaviours that limit these costs. Indeed, our finding that dispersal movements in the matrix are straighter than resource searching movements within habitat supports the prediction of simulation studies that adopting straight movements for dispersal reduces its costs in fragmented landscapes. Our results support the mounting evidence that dispersal in fragmented landscapes evolved towards the use of specific movement behaviour, different from explorative searching movements within habitat.
Highlights
Dispersal between habitat patches is a key process in the functioning ofpopulations
The perceptual range being lower than the distance between habitat patches in the study area, P. eunomia likely perceives these habitat networks as fragmented, and must locate suitable habitats while dispersing across the landscape matrix
Our finding that dispersal movements in the matrix are straighter than resource searching movements within habitat supports the prediction of simulation studies that adopting straight movements for dispersal reduces its costs in fragmented landscapes
Summary
Dispersal between habitat patches is a key process in the functioning of (meta)populations. As distance between suitable habitats increases, the ongoing process of habitat fragmentation is expected to generate strong selection pressures on movement behaviour. This leads to an increase or decrease of dispersal according to its cost relative to landscape structure. [11,12]) This was clear in our study species, the bog fritillary butterfly (Proclossiana eunomia), a habitat specialist species restricted to unfertilized alluvial wet meadows and peat bogs [13,14]. This behavioural response affects the first stage of dispersal, i.e. emigration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.