Abstract

In this work, a technique for quantifying carbon doping concentrations in GaN:C/AlGaN buffer structures using cathodoluminescence (CL) is presented. The method stems from the knowledge that the blue and yellow luminescence intensity in CL spectra of GaN varies with the carbon doping concentration. By calculating the blue and yellow luminescence peak intensities normalised to the peak GaN near-band-edge intensity for GaN layers of known carbon concentrations, calibration curves that show the change in normalised blue and yellow luminescence intensity with carbon concentration in the 1016 − 1019 cm−3 range were derived at both room temperature and 10 K. The utility of such calibration curves was then examined by testing against an unknown sample containing multiple carbon-doped GaN layers. The results obtained from CL using the normalised blue luminescence calibration curves are in close agreement with those from secondary-ion mass spectroscopy (SIMS). However,the method fails when applying calibration curves obtained from the normalised yellow luminescence likely due to the influence of native VGa defects acting in this luminescence region. Although this work shows that indeed CL can be used as a quantitative tool to measure carbon doping concentrations in GaN:C, it is noted that the intrinsic broadening effects innate to CL can make it difficult to differentiate between the intensity variations in thin ( < 500 nm) multilayered GaN:C structures such as the ones studied in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.